如图,在△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,且∠DAC=∠DCA=15°,求证:BD=BA.
问题描述:
如图,在△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,且∠DAC=∠DCA=15°,求证:BD=BA.
答
如图:以AD为边,在△ADB中作等边三角形ADE,连接BE.∵∠BAE=90°-60°-15°=15°,即∠BAE=∠CAD,且AB=AC,AE=AD,∴△EAB≌△DAC(SAS),∴∠BEA=∠CDA=180°-15°-15°=150°,∴∠BED=360°-∠BEA-60°=150°...