已知x=ln(1+t2)y=arctant,求dy/dx及d2ydx2.
问题描述:
已知
,求
x=ln(1+t2) y=arctant
及dy dx
.
d2y dx2
答
∵
x=ln(1+t2) y=arctant
∴
=dx dt
,2t 1+t2
=dy dt
1 1+t2
∴
=dy dx
=
dy dt
dx dt
=
1 1+t2
2t 1+t2
1 2t
∴
=
d2y dx2
(d dx
)=dy dx
(d dt
)•dy dx
=dt dx
=−
(d dt
)dy dx
dx dt
•1 2t2
=−1+t2
2t
1+t2
4t3