在偏导数那里卡了...求u=f(x/y,y/z)的一阶偏导数(其中f具有一阶连续偏导数),谢谢么么哒们了~
问题描述:
在偏导数那里卡了...求u=f(x/y,y/z)的一阶偏导数(其中f具有一阶连续偏导数),谢谢么么哒们了~
答
u 是自变量 x、y、z 的函数;设 f 的偏导数为 f1'、f2’;
∂u/∂x=f1'*[∂(x/y)/∂x]+f2'*[∂(y/z)/∂x]=f1'/y+f2'*0=f1'/y;
∂u/∂y=f1'*[∂(x/y)/∂y]+f2'*[∂(y/z)/∂y]=-(x/y²)f1'+(f2'/z);
∂u/∂z=f1'*[∂(x/y)/∂z]+f2'*[∂(y/z)/∂z]=f1'*0-(y/z²)f2'=-(y/z²)f2';不是应该还有个 f3'么函数 u 的实际自变量是 x/y 和 y/z 两个,没有第三个,所以不可能有 f3' 之类;嗖嘎。。谢谢了