已知函数f(x)=x3+ax2+bx若函数f(x)在x=2处有极值-6,求y=(x)的单调递减区间 若y=(x

问题描述:

已知函数f(x)=x3+ax2+bx若函数f(x)在x=2处有极值-6,求y=(x)的单调递减区间 若y=(x
已知函数f(x)=x3+ax2+bx
1,若函数f(x)在x=2处有极值-6,求y=(x)的单调递减区间
2 若y=(x)的导数f'(x)对x∈[-1,1]都有f'(x)≤2,求b/a-1的取值范围

f(x)=x3+ax2+bx
f'=3x^2+2ax+b
x=2处有极值-6
f'(-2)=3*(-2)^2+2a*(-2)+b=12-4a+b=0.(1)
f(-2)=(-2)^3+a*(-2)^2+b=8+4a+b=-6.(2)
由(1)、(2)解得:
a=-1/4,b=13
f(x)=x^3-1/4x^2+13x
f'(x)=3x^2-1/2x+13=1/2(6x^2-x+26)=1/2(x+2)(6x-13)
x∈(-∞,-2)和(13/6,+∞)时,f'(x)>0,f(x)单调增
x∈(-2,13/6)时,f'(x)<0,f(x)单调减
f'(x)对x∈[-1,1]都有f'(x)≤2
3x^2+2ax+b≤2
即:g(x)=3x^2+2ax+b-2=3[x^2+2a/3 x+(b-2)/3]≤0
x∈[-1,1]都有f'(x)≤2
相当于x^2+2a/3 x+(b-2)/3=(x+1)(x-1)=x^2-1
即:2a/3=0,(b-2)/3=-1
∴a=0,b=-1
b/(a-1)=-1/(0-1)=1