对于n∈N*,用数学归纳法证明: 1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1=1/6n(n+1)(n+2).
问题描述:
对于n∈N*,用数学归纳法证明:
1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1=
n(n+1)(n+2). 1 6
答
证明:设f(n)=1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1.
(1)当n=1时,左边=1,右边=1,等式成立;
(2)设当n=k时等式成立,即1•k+2•(k-1)+3•(k-2)+…+(k-1)•2+k•1=
k(k+1)(k+2),1 6
则当n=k+1时,
f(k+1)=1•(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-2]•3+[(k+1)-1]•2+(k+1)•1
=f(k)+1+2+3+…+k+(k+1)
=
k(k+1)(k+2)+1 6
(k+1)(k+1+1)1 2
=
(k+1)(k+2)(k+3).1 6
∴由(1)(2)可知当n∈N*时等式都成立.