对于n∈N*,用数学归纳法证明: 1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1=1/6n(n+1)(n+2).

问题描述:

对于n∈N*,用数学归纳法证明:
1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1=

1
6
n(n+1)(n+2).

证明:设f(n)=1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1.
(1)当n=1时,左边=1,右边=1,等式成立;
(2)设当n=k时等式成立,即1•k+2•(k-1)+3•(k-2)+…+(k-1)•2+k•1=

1
6
k(k+1)(k+2),
则当n=k+1时,
f(k+1)=1•(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-2]•3+[(k+1)-1]•2+(k+1)•1
=f(k)+1+2+3+…+k+(k+1)
=
1
6
k(k+1)(k+2)+
1
2
(k+1)(k+1+1)
=
1
6
(k+1)(k+2)(k+3).
∴由(1)(2)可知当n∈N*时等式都成立.