已知:x+3/x+2=1/根号3+根号2+1,求x-3/2x-4÷(5/x-2-x-2)的值(x+3)/(x+2) = 1/(√3+√2+1)

问题描述:

已知:x+3/x+2=1/根号3+根号2+1,求x-3/2x-4÷(5/x-2-x-2)的值
(x+3)/(x+2) = 1/(√3+√2+1)

楼上错误,答案应该是1/2(根号2+根号3)

把题写清楚一些,比如=后面的根号2+1,1是不是在根号下,这些都要说清楚

取倒数(x+2)/(x+3)=√3+√2+1(x+2)/(x+3)-1=√3+√2-1/(x+3)=√3+√2原式=[(x-3)/(2x-4)]÷[5-(x+2)(x-2)]/(x-2)]=[(x-3)/2(x-2)]×[-(x-2)/(x²-9)]=[(x-3)/2(x-2)]×[-(x-2)/(x+3)(x-3)]=-1/(x+3)=√3+√2...