二次根式 (20 15:6:51)已知 x+3/x+2=1/√3+√2+1,求 x-3/2x-4÷((5/x-2)-x-2)的值 /为分号 √为根号
问题描述:
二次根式 (20 15:6:51)
已知 x+3/x+2=1/√3+√2+1,求 x-3/2x-4÷((5/x-2)-x-2)的值
/为分号 √为根号
答
其实很简单的,方法见下:
x+3/x+2=1/√3+√2+1 ,
X+2/x+3=√3+√2+1 ,
[(x+3)-1)/(x+3)=√3+√2+1
-1/(x+3)=√3+√2
x-3/2x-4÷(5/x-2 -x-2)
=(x-3)/2(x-2)÷(9-x^2)/(x-2)
=-1/2*1/(x+3)
=(√3+√2)/2
答
∵x+3/x+2=1/√3+√2+1 ,
∴X+2/x+3=√3+√2+1 ,
即[(x+3)-1)/(x+3)==√3+√2+1
∴-1/(x+3)=√3+√2
x-3/2x-4÷(5/x-2 -x-2)
=(x-3)/2(x-2)÷(9-x^2)/(x-2)
=-1/2*1/(x+3)
=(√3+√2)/2
就OK了
答
∵x+3/x+2=1/√3+√2+1 ,∴X+2/x+3=√3+√2+1 ,即[(x+3)-1)/(x+3)==√3+√2+1∴-1/(x+3)=√3+√2x-3/2x-4÷(5/x-2 -x-2)=(x-3)/2(x-2)÷(9-x^2)/(x-2)=(x-3)/2(x-2)*(x-2)/(3+x)(3-x)=-1/2*1/(x+3)=(√3+√2)/2...