在三角形abc中,(sina+sinb+sinc)^2=3(sin^2a+sin^2b+sin^2c) 求三角形形状

问题描述:

在三角形abc中,(sina+sinb+sinc)^2=3(sin^2a+sin^2b+sin^2c) 求三角形形状

这个三角形为等边三角形:
(sina+sinb+sinc)^2=(sina+sinb)^2+2(sina+sinb)*sinc+sin^2c
=sin ^2a+2sina*sinb+sin^2b+2sina*sinc+2sinb*sinc+sin^2c
又(sina+sinb+sinc)^2=3(sin^2a+sin^2b+sin^2c)
且(sina+sinb+sinc^2=sin^2a+2sina*sinb+sin^2b+2sina*sinc+2sinb*sinc+sin^2c
所以
3(sin^2a+sin^2b+sin^2c)=sin^2a+2sina*sinb+sin^2b+2sina*sinc+2sinb*sinc+sin^2c
则化简可得:
2(sina*sinb+sina*sinc+sinb*sinc)=2(sin^2a+sin^2b+sin^2c)
sina*sinb+sina*sinc+sinb*sinc=sin^2a+sin^2b+sin^2c
sin^2a-sina*sinb+sin^2b-sinb*sinc+sin^2c-sina*sinc=0
sina(sina-sinb)+sinb(sinb-sinc)+sinc(sinc-sina)=0
又a、b、c为三角形的三边所以sina、sinb、sinc不可能为0
所以sina-sinb、sinb-sinc、sinc-sina就要都等于0
进而可得sina-sinb=0/sinb-sinc=0/sinc-sina=0
所以a=b/b=c/c=a
所以a=b=c则 这个三角形为等边三角形

(sinA)^2+(sinB)^2+(sinC)^2+2sinAsinB+2sinBsinA+2sinCsinA
=3(sinA)^2+3(sinB)^2+3(sinC)^2
2(sinA)^2+2(sinB)^2+2(sinC)^2-2sinAsinB-2sinBsinA-2sinCsinA=0
[(sinA)^2+(sinB)^2-2sinAsinB]+[(sinB)^2+(sinC)^2-2sinBsinC]+[(sinC)^2+(sinA)^2-2sinCsinA]=0
(sinA-sinB)^2+(sinB-sinC)^2+(sinC-sinA)^2=0
∴sinA=sinB=sinC
∴∠A=∠B=∠C
等边三角形