如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD的中线.求证:AC=2AE.
问题描述:
如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD的中线.求证:AC=2AE.
答
作AB中点F,连接DF.∵∠ADB=∠BAD,∴BD=AB,又∵CD=AB,∴CD=BD,即D为BC中点,∵F是AB中点,∴DF∥AC且DF=12AC,又∵AB=BD,E、F分别为BD、AB中线,∴DE=AF=12AB=12BD,∵∠ADB=∠BAD,∴∠FAD=∠EDA,在△ADF与...