sin²α*sin²β+cos²α*cos²β-1/2cos2αcos2β

问题描述:

sin²α*sin²β+cos²α*cos²β-1/2cos2αcos2β
=(1-cos2α)/2*(1-cos2β)/2+(1+cos2α)/2*(1+cos2β)/2-1/2cos2α*cos2β=1/4(1+cos2α*cos2β-cos2α-cos2β)+1/4(1+cos2α*cos2β+cos2α+cos2β)-1/2cos2α*cos2β=1/4+1/4=1/2
这里的第二步不太明白怎么化的,

sin²α*sin²β+cos²α*cos²β-1/2cos2αcos2β=[(1-cos2α)/2]*[(1-cos2β)/2]+[(1+cos2α)/2]*[(1+cos2β)/2]-1/2cos2α*cos2β(利用倍角公式 1-cos2α=2sin²α 1+cos2α=2cos&su...