cosa=-1/3,a是第二象限角,且sin(a+B)=1,求cos(2a+B)的值

问题描述:

cosa=-1/3,a是第二象限角,且sin(a+B)=1,求cos(2a+B)的值

因sin(a+b)=1,则cos(a+b)=0
cosa=-1/3,a在第二象限,则sina>0,sina=2根号2/3
cos(2a+b)=cos(a+(a+b))=cosacos(a+b)-sinasin(a+b)=-2根号2/3

cosa=-1/3,a是第二象限角,且sin(a+B)=1
那么
cos(a+b)=0
sina=根号(1-1/9)=2根号2 /3
cos(2a+B)=cos[a+(a+b)]=cosacos(a+b)-sinasin(a+b)=0-2根号2 /3*1=-2根号2 /3

cosa=-1/3,a是第二象限角,sina=2√2/3,
sin(a+B)=1,cos(a+B)=0
cos(2a+B)=cos[(a+B)+a]
=cos(a+B)cosa-sin(a+B)sina
=-2√2/3

sin(a+B)=1,a+B=2kπ+π/2
cos(2a+B)=cos[(a+B)+a]
=cos(2kπ+π/2+a)
=cos(π/2+a)
=-sina
=-2√2/3