三角形ABC中,2根号2 (sin平方A-sin平方C)=(a-b)sinB,它的外接圆半径为根号2

问题描述:

三角形ABC中,2根号2 (sin平方A-sin平方C)=(a-b)sinB,它的外接圆半径为根号2
1,求C的度数;
2,求三角形ABC面积的最大值.

a/sinA=b/sinB=c/sinC=2R=2√2
=>a=2RsinA,b=2RsinB,c=2RsinC
2√2(sin²A-sin²C)=(a-b)sinB
=>4R²(sin²A-sin²C)=2R(a-b)sinB
=>a²-c²=(a-b)b
=>(a²+b²-c²)/2ab=1/2=cosC
=>C=60°
S△ABC=absinC/2=2RsinA*2RsinB*sinC/2
=√3(2sinAsinB)=√3[cos(A-B)-cos(A+B)]
=√3[cos(A-B)+1/2]≤3√3/2