如图,正方形网格的每一个小正方形的边长都是1,试求∠A1E2A2+∠A4E2C4+∠A4E5C4的度数.

问题描述:

如图,正方形网格的每一个小正方形的边长都是1,试求∠A1E2A2+∠A4E2C4+∠A4E5C4的度数.

连接A3E2
∵A3A2=A1A2,A2E2=A2E2,∠A3A2E2=∠A1A2E2=90°,
∴Rt△A3A2E2≌Rt△A1A2E2(SAS).
∴∠A3E2A2=∠A1E2A2.(3分)
由勾股定理,得C4E5

22+12
5
C3E2A4E5
42+12
17
A3E2

∵A4C4=A3C3=2,
∴△A4C4E5≌△A3C3E2(SSS).
∴∠A3E2C3=∠A4E5C4.(6分)
∴∠A1E2A2+∠A4E2C4+∠A4E5C4=∠A3E2C4+∠A4E2C4+∠A3E2C3=∠A2E2C4
由图可知△E2C2C4为等腰直角三角形.
∴∠A2E2C4=45度.
即∠A1E2A2+∠A4E2C4+∠A4E5C4=45°(9分).