已知tanα=-1/2 则(1+2sinα*cosα)/(sin²α-cos²α)的值是

问题描述:

已知tanα=-1/2 则(1+2sinα*cosα)/(sin²α-cos²α)的值是

(1+2sinα*cosα)/(sin²α-cos²α)
=(sin²α+cos²α+2sinα*cosα)/(sin²α-cos²α)
=(sinα+cosα)²/[(sinα+cosα)(sinα-cosα)]
=(sinα+cosα)/(sinα-cosα)
=(tanα+1)/(tanα-1)
=(-1/2+1)/(-1/2-1) (已知tanα=-1/2)
=-1/3

(1+2sinα*cosα)/(sin²α-cos²α)
=(1+sin2a)/(-cos2a)
万能公式:因为tanα=-1/2
sin2α=2tan(α)/[1+tan^2(α)]=-1/(5/4)=-4/5
cos2α=[1-tan^2(α)]/[1+tan^2(α)] =3/5
所以(1+sin2a)/(-cos2a)
=(1-4/5)/(-3/5)
=-1/3

sinα/cosα=tanα=-1/2
cosα=-2sinα
代入恒等式sin²α+cos²α=1
sin²α=1/5
cos²α=4/5
sinαcosα=sinα(-2sinα)
=-2sin²α
=-2/5
所以代入
原式=-1/3