设f(x)=ax7+bx5+cx3+dx+5,其中a,b,c,d为常数.若f(-7)=-7,则f(7)=_.
问题描述:
设f(x)=ax7+bx5+cx3+dx+5,其中a,b,c,d为常数.若f(-7)=-7,则f(7)=______.
答
∵f(x)=ax7+bx5+cx3+dx+5,
∴f(x)-5=ax7+bx5+cx3+dx为奇函数,
∵f(-7)=-7,
∴f(-7)-5=-12
∴f(7)-5=12
∴f(7)=17
故答案为:17