已知椭圆M(焦点在x轴上)的离心率为2√2/3,椭圆上一点与椭圆的两个焦点构成的三角形周长,6+4√2(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A、B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.

问题描述:

已知椭圆M(焦点在x轴上)的离心率为2√2/3,椭圆上一点与椭圆的两个焦点构成的三角形周长,6+4√2
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M交于A、B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.