已知{an}是等比数列,a2=2,a5=14,则a1a2+a2a3+…+anan+1=(  ) A.16(1-4-n) B.16(1-2-n) C.323(1-4-n) D.323(1-2-n)

问题描述:

已知{an}是等比数列,a2=2,a5=

1
4
,则a1a2+a2a3+…+anan+1=(  )
A. 16(1-4-n
B. 16(1-2-n
C.
32
3
(1-4-n
D.
32
3
(1-2-n

a5=

1
4
=a2q3=2•q3,解得q=
1
2

数列{anan+1}仍是等比数列:其首项是a1a2=8,公比为
1
4

所以,a1a2+a2a3+…+anan+1=
8[1-(
1
4
)
n
]
1-
1
4
=
32
3
(1-4-n)

故选C.