log2^x >= log4^(3x+4)
问题描述:
log2^x >= log4^(3x+4)
log2 跟 log4怎样化同底数啊 哎 对你们应该很简单吧 .希望有好人帮到我,
底数是 2 和 4
答
我的对,看清楚
log2^x>= log4^(3x+4) ==> log2^x>= log2^(3x+4)/log2^4 ==>
2log2^x>=log2^(3x+4) ==> log2^(x^2)>=log2^(3x+4) ==>
x^2>=3x+4