球面上有三个点A、B、C,其中AB=18,BC=24,AC=30,且球心到平面ABC的距离为球半径的一半,那么这个球的半径为( ) A.20 B.30 C.103 D.153
问题描述:
球面上有三个点A、B、C,其中AB=18,BC=24,AC=30,且球心到平面ABC的距离为球半径的一半,那么这个球的半径为( )
A. 20
B. 30
C. 10
3
D. 15
3
答
由题意AB=18,BC=24,AC=30,∵182+242=302,可知三角形是直角三角形,
三角形的外心是AC的中点,球心到截面的距离就是球心与三角形外心的距离,
设球的半径为R,球心到△ABC所在平面的距离为球半径的一半,
所以R2=(
R)2+152,1 2
解得R2=300,
∴R=10
.
3
故选:C.