求函数y=(2x^2-x+7)/(x^2-x+4). (2

问题描述:

求函数y=(2x^2-x+7)/(x^2-x+4). (2

y=(2x²-x+7)/(x²-x+4)
=[2(x²-x+4)+(x-1)]/(x²-x+4)
=2+(x-1)/(x²-x+4)
=2+1/[x+4/(x-1)]
∵2≤x≤6
∴x+4/(x-1)=(x-1)+4/(x-1)+1≥2√[(x-1)·4/(x-1)]+1=5
∴y=2+1/[x+4/(x-1)]≤2+1/5=11/5,当且仅当x=3时,y取得最大值11/5,
∵当x=2时,y=13/6;当x=6时,y=73/34