设函数f(x)=(ax^2+1)/(bx+c)(a,b,c∈Z)的图像关于原点对称,f(1)=2,f(2)
问题描述:
设函数f(x)=(ax^2+1)/(bx+c)(a,b,c∈Z)的图像关于原点对称,f(1)=2,f(2)
数学人气:922 ℃时间:2019-08-17 19:40:48
优质解答
∵函数f(x)=(ax^2+1)/(bx+c)(a,b,c∈Z)的图像关于原点对称
∴f(x)是奇函数 ∴f(﹣x)=﹣f(x) ∴(ax²+1)/(﹣bx+c)=﹣(ax²+1)/(bx+c) ∴c=0
∴f(x=(ax²+1)/(bx)
∵f(1)=2 ∴(a+1)/b=2 ∴a+1=2b ∴a=2b-1
∵f(2)<3 ∴(4a+1)/(2b)=(8b-3)/(2b)=4-3/(2b)<3 ∴1/b>2/3 ∴0<b<3/2
∵a,b,c∈Z ∴b=1 ∴a=2b-1=1
∴a=1 b=1 c=0
∴f(x)是奇函数 ∴f(﹣x)=﹣f(x) ∴(ax²+1)/(﹣bx+c)=﹣(ax²+1)/(bx+c) ∴c=0
∴f(x=(ax²+1)/(bx)
∵f(1)=2 ∴(a+1)/b=2 ∴a+1=2b ∴a=2b-1
∵f(2)<3 ∴(4a+1)/(2b)=(8b-3)/(2b)=4-3/(2b)<3 ∴1/b>2/3 ∴0<b<3/2
∵a,b,c∈Z ∴b=1 ∴a=2b-1=1
∴a=1 b=1 c=0
我来回答
类似推荐
答
∵函数f(x)=(ax^2+1)/(bx+c)(a,b,c∈Z)的图像关于原点对称
∴f(x)是奇函数 ∴f(﹣x)=﹣f(x) ∴(ax²+1)/(﹣bx+c)=﹣(ax²+1)/(bx+c) ∴c=0
∴f(x=(ax²+1)/(bx)
∵f(1)=2 ∴(a+1)/b=2 ∴a+1=2b ∴a=2b-1
∵f(2)<3 ∴(4a+1)/(2b)=(8b-3)/(2b)=4-3/(2b)<3 ∴1/b>2/3 ∴0<b<3/2
∵a,b,c∈Z ∴b=1 ∴a=2b-1=1
∴a=1 b=1 c=0