高一数学题:已知二次函数f(x)=ax²+bx(a,b为常数,且a≠0)满足条件f(x-1)=f(3-x)且方程f(x)=2x有等根 我是这样做到 ∵f(x-1)=f(3-x) ∴b=-2a 又∵方程f(x)=2x有等根 往下就不
问题描述:
高一数学题:已知二次函数f(x)=ax²+bx(a,b为常数,且a≠0)满足条件f(x-1)=f(3-x)且方程f(x)=2x有等根 我是这样做到 ∵f(x-1)=f(3-x) ∴b=-2a 又∵方程f(x)=2x有等根 往下就不会了 本人比较笨 讲的细心点 有高分悬赏
答
由f(x-1)=f(3-x)a(x-1)^2 +b(x-1)=a(3-x)^2 +b(3-x)ax^2 +(b-2a)x+a-b=ax^2 -(6a+b)x+9a+3b(b-2a+6a+b)x=9a+3b-a+b(4a+2b)x=8a+4b因x不为0,故:4a+2b=8a+4b=0即 b=-2a所以 f(x)=ax^2 -2ax由方程f(x)=2x有等根得:ax^...