O是三角形ABC内一点,且OB、OC分别平分角ABC和角ACB.(1)若角A等于46度,求角BOC

问题描述:

O是三角形ABC内一点,且OB、OC分别平分角ABC和角ACB.(1)若角A等于46度,求角BOC
;(2)若角A等于N度,求角BOC;(3)若角BOC等于148度,利用第(2)题的结论求角A

∵∠A=46
∴∠ABC+∠ACB=180-∠A=134
∵BD平分∠ABC
∴∠ABD=∠ABC/2
∴∠BEC=∠A+∠ABD=∠A+∠ABC/2
∵CD平分∠ACB
∴∠ACD=∠ACB/2
∴∠BOC=∠BEC+∠ACD
=∠A+(∠ABC+∠ACB)/2
=46+134/2
=113°2、∵∠A=n∴∠ABC+∠ACB=180-∠A=180-n∵BD平分∠ABC∴∠ABD=∠ABC/2∴∠BEC=∠A+∠ABD=∠A+∠ABC/2∵CD平分∠ACB∴∠ACD=∠ACB/2∴∠BOC=∠BEC+∠ACD=∠A+(∠ABC+∠ACB)/2=n+(180-n)/2=90°+n/23、∵∠BOC=148∴90+n/2=148∴n=116°∴∠A=116°角ABC/2的意思是不是二分之一角ABC是的哦、谢啦