如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.
问题描述:
如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE
(1)求证:BE=CE;
(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.
答
证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,
∴AB=DC,∠BAE=∠CDE,AE=DE,
在△BAE与△CDE中,
,
AB=DC ∠BAE=∠CDE AE=DE
∴△BAE≌△CDE,
∴BE=CE;
(2)延长CD和BE的延长线交于H,
∵BF⊥CD,∠HEC=90°,
∴∠EBF+∠H=∠ECH+∠H=90°
∴∠EBF=∠ECH,
又∵∠BEC=∠CEH=90°,
BE=CE(已证),
∴△BEG≌△CEH,
∴EG=EH,BG=CH=DH+CD,
∵△BAE≌△CDE(已证),
∴∠AEB=∠GED,
∠HED=∠AEB,
∴∠GED=∠HED,
又∵EG=EH(已证),ED=ED,
∴△GED≌△HED,
∴DG=DH,
∴BG=DG+CD.