已知抛物线y^2=4x的顶点为O,抛物线上A,B两点满足向量OA·向量OB=0,则点O到直线AB的最大距离为

问题描述:

已知抛物线y^2=4x的顶点为O,抛物线上A,B两点满足向量OA·向量OB=0,则点O到直线AB的最大距离为

设A(a²,2a)B(b²,2b)
因为向量OA·向量OB=0
所以a²*b²+4ab=0 两边同除ab 所以ab=-4
由两点式得出 直线AB的方程为 2x-(a+b)y-8=0
d=8/根号4+(a+b)²
当分母为最小值时 为最大值
当(a+b)=0 时.d=4