将连续自然数1、2、3、4、5、6、7、…逐个相加,得结果2012.验算时发现,漏加了一个数,那么这个漏加的数是_.
问题描述:
将连续自然数1、2、3、4、5、6、7、…逐个相加,得结果2012.验算时发现,漏加了一个数,那么这个漏加的数是______.
答
设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:
(1+n)n÷2=
;n+n2
2
经代入数值试算可知:
当n=62时,数列和=1953,
当n=63时,数列和=2016,
可得:1953<2012<2016,
所以这个数列共有63项,少加的数为:2016-2012=4.
故答案为:4.