抛物线x^2=8y的焦点为F,AB是抛物线上的两动点,向量AF=向量λFB(λ>0)过AB两点分别作抛物线的切线,设...

问题描述:

抛物线x^2=8y的焦点为F,AB是抛物线上的两动点,向量AF=向量λFB(λ>0)过AB两点分别作抛物线的切线,设...
抛物线x^2=8y的焦点为F,AB是抛物线上的两动点,向量AF=向量λFB(λ>0)过AB两点分别作抛物线的切线,设其交点为M(1)证明:线段FM被x轴平分(2)计算向量FM·向量AB的值(3)求证:|FM|^2=|FA|·|FB|

【注:该题需用参数法】【注:该题需用参数法】抛物线x²=8y.焦点F(0,2),可设点A(4a,2a²),B(4b,2b²),(a≠b),由条件“向量AF=λFB(λ>0)”可知,三点A,F,B共线,∴ab=-1.由导数可求得过A,B两点的切线方...