如图在Rt△ABC中,∠C=90°,a、b分别是∠A,∠B的对边,如果sinA:sinB=2:3,那么a:b等于( ) A.2:3 B.3:2 C.4:9 D.9:4
问题描述:
如图在Rt△ABC中,∠C=90°,a、b分别是∠A,∠B的对边,如果sinA:sinB=2:3,那么a:b等于( )
A. 2:3
B. 3:2
C. 4:9
D. 9:4
答
设∠C所对的边为c,
∵Rt△ABC中,∠C=90°,
∴sinA=
,sinB=a c
,b c
∵sinA:sinB=2:3,
∴
=sinA sinB
=2 3
,即a:b=2;3.
a c
b c
故选A.