如图,在等腰直角三角形ABC中,O是斜边AC的中点,P是斜边AC上的一个动点,D为BC上的一点,且PB=PD,DE⊥AC,垂足为点E. (1)求证:PE=BO; (2)设AC=2a,AP=x,四边形PBDE的面积为y,求y与x之
问题描述:
如图,在等腰直角三角形ABC中,O是斜边AC的中点,P是斜边AC上的一个动点,D为BC上的一点,且PB=PD,DE⊥AC,垂足为点E.
(1)求证:PE=BO;
(2)设AC=2a,AP=x,四边形PBDE的面积为y,求y与x之间的函数关系式,并写出自变量的取值范围.
答
(1)证明:∠PDB=∠PBD=45°+∠PBO=45°+∠DPC(∠PDB外角)∴∠PBO=∠DPC.又∵BP=DP∴Rt△BOP≌Rt△PDE∴BO=PE;(2)PE=AO=BO=OC=a,AP=xEC=DE=OP=AO-AP=a-xBC=AB=2a作EF⊥CD,EF=EC•22y=S△BPO+S△BOC-S△DCE=...