一次函数y=x-2与二次函数y=ax²+bx+c的图像交与A(2,m)和B(n,3)两点,且抛物线的对称轴是x=3.

问题描述:

一次函数y=x-2与二次函数y=ax²+bx+c的图像交与A(2,m)和B(n,3)两点,且抛物线的对称轴是x=3.
(1)求a,b,c的值,(2)在同一坐标系中画出这两个函数的图像(3)当自变量x为何值时,一次函数与二次函数的值都随x的增大而增大?

(1)将(2,M)(N,3)代入Y=X-2
2-2=M,M=0
N-2=3,N=5
因此交点为(2,0)、(5,3)
抛物线对称轴为X=3,设函数表达式为Y=a(x-3)²+k
代入(2,0)(5,3)
a+k=0,4a+k=3
a=1,k=-1
函数为Y=(X-3)²-1=X²-6X+8
a=1,b=-6,c=8
(2)由于抛物线开口向上,因此在对称轴右侧,Y随X增大而增大
所以当x≥3时,Y随X增大而增大