若n阶行列式d中等于零的元素的个数大于n^2-n,求d的值,

问题描述:

若n阶行列式d中等于零的元素的个数大于n^2-n,求d的值,

行列式一共有n^2个元素,等于零的元素的个数大于n^2-n,即不等于零的元素的个数小于n^2-(n^2-n)=n,这表明至少有一行元素为0(不则,每行一个非0元素就有n个了),所以行列式一定为0.经济数学团队帮你解答,请及时采纳.