已知关于x的一元二次方程2x^2+4x+k减1=0有实数根,k为正整数问..1当此方程有两个非零的整数根时将关于x的二次涵数y=2x^2+4x+k减1的图象向下平移8个单位求平移后的解西式..问2在1的条件下将平移后的图象在x轴下方的部分沿

问题描述:

已知关于x的一元二次方程2x^2+4x+k减1=0有实数根,k为正整数问..1当此方程有两个非零的整数根时将关于x的二次涵数y=2x^2+4x+k减1的图象向下平移8个单位求平移后的解西式..问2在1的条件下将平移后的图象在x轴下方的部分沿x轴翻折图象其余部分保持不变得到一个新的图象.当直线y=1/2x+b(b

1.已知关于x的一元二次方程2x^2+4x+k-1=0有两个非零的整数根,且k为正整数,
所以,判别式是完全平方数,所以
△=16-8(k-1)>0,k-1