解方程:2(x2+1/x2 )-3(x+1/x )-1=0.

问题描述:

解方程:2(x2+

1
x2
)-3(x+
1
x
)-1=0.

(x+

1
x
)2x2+
1
x2
+2,
∴方程:2(x2+
1
x2
)-3(x+
1
x
)-1=0可化为2(x+
1
x
)2−3(x+
1
x
)−5=0

因式分解为[2(x+
1
x
)−5][(x+
1
x
)+1]
=0,
2(x+
1
x
)−5=0
x+
1
x
+1=0

2(x+
1
x
)−5=0
化为2x2-5x+2=0,解得x=2或
1
2
,经验证适合原方程.
x+
1
x
+1=0
.化为x2+x+1=0,∵△<0,∴此方程无解.
综上可知:原方程的解为x=2或
1
2