设x,y,z为正实数,且x+y+z>=xyz,求x^2+y^2+z^2/xyz的最小值
问题描述:
设x,y,z为正实数,且x+y+z>=xyz,求x^2+y^2+z^2/xyz的最小值
答
化成齐次式((x^2+y^2+z^2)/xyz)^2 >= (xx+yy+zz)^2 /((x+y+z)xyz)xx+yy+zz>=1/3*(x+y+z)^2x+y+z >= 3(xyz)^(1/3)xx+yy+zz >= 3(xyz)^(2/3)三式相乘:(xx+yy+zz)^2 >= 3(x+y+z)xyz=>((x^2+y^2+z^2)/xyz)^2 >=3=>(x^2+...