角AOB﹦90°,OM是角AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边﹙ 转到下面问题补充上﹚
问题描述:
角AOB﹦90°,OM是角AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边﹙ 转到下面问题补充上﹚
分别与OA、OB交于点C、D,试猜想PC和PD又怎样的数量关系,并证明你的猜想.
答
如图,作PE、PF分别⊥OA、OB(即P点到两边的距离)
得PE=PF(角平分线上一点到两边的距离相等)
且∠EOF=90°,
又∵∠CPD=90°
即相当于,绕P点将∠CPD逆时针旋转一个角度(图中90,笔误)
∴∠1=∠2
在△PCE和△PDF中
∠1=∠2,∠E=∠F=90°,PE=PF
∴△PCE≌△PDF(ASA)
∴PC=PD
P虽然在OM上滑动,但角平分线上一点到两边的距离相等规律不变
∴PC永远=PD