已知向量a=(sinx,sinx+cosx)b=(2cosx,cosx-sinx),设f(x)=a*b(1)当x∈[0,π/2]时,求函数f(x)的值域;(2)[-π/8,0],f(θ)=2/5,求sin(2θ+3π/4)的值.

问题描述:

已知向量a=(sinx,sinx+cosx)b=(2cosx,cosx-sinx),设f(x)=a*b
(1)当x∈[0,π/2]时,求函数f(x)的值域;
(2)[-π/8,0],f(θ)=2/5,求sin(2θ+3π/4)的值.

f(x)=sian2x+cos2x=√(2)sin(
x[0,π/2].2x+π/4∈[π/4,5π/4],sin(2θ+3π/4)∈[--(√(2)/2),1],f(x)∈[-1,√(2)]

f(x)=a*b =2sinxcosx+(sinx+cosx)(cosx-sinx)=sin2x+cos2x=√2sin(2x+π/4)1)当x∈[0,π/2]时 2x+π/4 ∈[π/4,π/4 +π] 当2x+π/4=π/2 f(x)取到最大值当2x+π/4=-π/2时 f(x)取到最小值所以f(x)的值域为 [-√2,...