设复数z1=√2+i,z2=-1+√3i,z1,z2所对应点为Z1,Z2,O为坐标原点,求向量OZ1,向量OZ2的夹角.
问题描述:
设复数z1=√2+i,z2=-1+√3i,z1,z2所对应点为Z1,Z2,O为坐标原点,求向量OZ1,向量OZ2的夹角.
答
cos=oz1·oz2/|oz1|*|oz2| 其中·表示向量点乘
=(√3-√2)/(√3*2)
=(3-√6)/6
所以夹角是arccos(3-√6)/6再能详细一点吗?谢谢了!哪一步不懂?