1.设函数y=x^3于y=(1/2)^(X-2)的图像的交点为(x.,y.)则x.所在的区间是什么

问题描述:

1.设函数y=x^3于y=(1/2)^(X-2)的图像的交点为(x.,y.)则x.所在的区间是什么
2.已知函数y=f(x)是R上的奇函数,其零点为x1,x2,x3……x2007 则 x1+x2+x3+……x2007等于什么
3.已知二次函数f(x)=ax²+bx+c 若对x₁,x₂∈R 且x₁<x₂f(x₁)≠f(x₂)
3.已知二次函数f(x)=ax²+bx+c 若对x₁,x₂∈R 且x₁<x₂ f(x₁)≠f(x₂)
证明方程f(x)=0.5[f(x₁)+f(x₂)]必有一个实数根属于(x₁,x₂)

哈哈!对不起,都是十几年前的面孔了,记不起来了,无能为力