已知函数y=x+t/x有如下性质:如果常数t>o,那么该函数在(0,√t)上是减函数,在(√t,+∞)上是增函数.

问题描述:

已知函数y=x+t/x有如下性质:如果常数t>o,那么该函数在(0,√t)上是减函数,在(√t,+∞)上是增函数.
(1)已知f(x)=4x^2-12x-3/2x+1,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)当a≥1时,对于(1)中的函数f(x)和函数g(x)=x^3-3a^2x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的取值范围.

(1)已知f(x)=4x^2-12x-3/2x+1,x∈[0,1],利用上述性质,求函数f(x)的和值域;f(x)=(4x^2-12x-3)/(2x+1)=[(2x+1)^2-8(2x+1)+4]/(2x+1)=(2x+1)-8+4/(2x+1)令(2x+1)=a,原式=a+4/a-8当a=2即x=1/2时、取得最小值-4.f(x)...