函数y=f(x)由方程e^x-y-x^2+2y=2确定,求y'求dy/dx
问题描述:
函数y=f(x)由方程e^x-y-x^2+2y=2确定,求y'求dy/dx
答
de^(x-y)-dx²+d2y=d2
e^(x-y)d(x-y)-2xdx+2dy=0
e^(x-y)*dx-e^(x-y)*dy-2xdx+2dy=0
所以
y'=dy/dx=[e^(x-y)-2x]/[e^(x-y)-2]