设f(n)=2+2^4+2^7+2^10+……+2^(3n+10)(n属于整数求f(n)=?2^(3n+10)是这个数列的第n+4项
问题描述:
设f(n)=2+2^4+2^7+2^10+……+2^(3n+10)(n属于整数求f(n)=?2^(3n+10)是这个数列的第n+4项
是怎么求项数的
是怎么求项数的
答
注意观察
项数n 1 2 3 4 ……
第n项指数 1 4 7 10 ……
3×0+1 3×1+1 3×2+1 3×3+1 ……
3×(1-1)+1 3×(2-1)+1 3×(3-1)+1 3×(4-1)+1 ……
对比以上过程的第一行和最后一行,可轻易得出 a(n) = 3×(n-1)+1
而 (3n+10) = 3n + 3×3+1
= 3(n+3) +1
= 3[(n+4) - 1] +1
显然,2^(3n+10)是这个数列的第n+4项