定义域在R上的函数f(x)对实数x,y,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.判断并证明f(x)的奇偶性.

问题描述:

定义域在R上的函数f(x)对实数x,y,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.判断并证明f(x)的奇偶性.

当x=0时,上式为:f(y)+f(-y)=2f(0)f(y)——a
当y=0时,上式为:f(x)+f(x)=2f(x)f(0)——b
将a式写成关于x的函数为:f(x)+f(-x)=2f(x)f(0)——c
因为f(0)≠0,所以从b式和c式可以得到:
f(x)+f(x)=f(x)+f(-x)
所以:f(x)=f(-x)
得出f(x)是偶函数