已知函数f(x)=2lg(x+1)和g(x)=lg(2x+t)(t为常数). (1)求函数f(x)的定义域; (2)若x∈[0,1]时,g(x)有意义,求实数t的取值范围. (3)若x∈[0,1]时,f(x)≤g(x)恒成立
问题描述:
已知函数f(x)=2lg(x+1)和g(x)=lg(2x+t)(t为常数).
(1)求函数f(x)的定义域;
(2)若x∈[0,1]时,g(x)有意义,求实数t的取值范围.
(3)若x∈[0,1]时,f(x)≤g(x)恒成立,求实数t的取值范围.
答
(1)x+1>0即x>-1∴函数f(x)的定义域为(-1,+∞)(2)∵x∈[0,1]时,g(x)有意义∴2x+t>0在[0,1]上恒成立,即t>0∴实数t的取值范围是(0,+∞)(3)∵x∈[0,1]时,f(x)≤g(x)恒成立∴2lg(x+1)≤l...