如图在三角形ABC中AB=AC,角BAC=120°,AB的垂直平分线MN分别交BC,AB于M,N,求证:CM=2BM.
问题描述:
如图在三角形ABC中AB=AC,角BAC=120°,AB的垂直平分线MN分别交BC,AB于M,N,求证:CM=2BM.
答
∵AB=AC,∠BAC=120°,
∴由内角和定理得:∠B=∠C=30°,
连接MA,∵MN是AB的线段垂直平分线,
∴MA=MB,∴∠BAM=∠B=30°,
∴∠MAC=90°,
∴在直角△AMC中,
∵∠C=30°,∴MC=2AM,
∴CM=2BM.