一动圆截直线3x-y=0和3x+y=0所得的弦长分别为8,4,求动圆圆心的轨迹方程.

问题描述:

一动圆截直线3x-y=0和3x+y=0所得的弦长分别为8,4,求动圆圆心的轨迹方程.

如图所示,设点M(x,y),由条件可得,AB=4,EC=2,
由点到直线的距离公式可得,MA2=

(3x−y)2
10
,MC2=
(3x+y)2
10

由垂径定理可得,MA2+AB2=MC2+EC2
(3x−y)2
10
+16=
(3x+y)2
10
+4
,化简可得,xy=10.
∴点M的轨迹方程为xy=10.