5.(2005·长沙)某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在如图所示的一次函数关系.

问题描述:

5.(2005·长沙)某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在如图所示的一次函数关系.
(1)求y关于x之间的函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价x为何值时,年获利最大?并求出这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120 万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之问存在着如图所示的一次函数关系.
⑴求y关于x的函数关系式;
⑵试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大?并求这个最大值;
⑶若公司希望该种产品一年的销售获利不低于40万元,借助⑵中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?
〖解〗:⑴设y=kx+b ,它过点(60,5),(80,4)
∴5=60k+b4=80k+b 解得k=-120b=8 ∴y=-120x+8,
⑵z=yx-40y-120=(-120x+8)(x-40)-120=-120x2+10x-440;
∴当x=100元时,最大年获得为60万元.
⑶令z=40,得40=-120x2+10x-440,整理得:
x2-200x+9600=0
解得:x1=80,x2=120,
由图象可知,要使年获利不低于40万元,销售单价应在80元到120元之间.…(8分)又因为销售单价越低,销售量越大,所以要使销售量最大,又要使年获利不低于40万元,销售单价应定为80元.