旅客在车站候车室等待检票,并且排队的旅客按照一定的速度在增加,检票速度一定,当车站开放一个检票口,

问题描述:

旅客在车站候车室等待检票,并且排队的旅客按照一定的速度在增加,检票速度一定,当车站开放一个检票口,
需用半小时可将待检旅客全部检票进站.同时开放2个检票口,只需10分钟便可将旅客全部进站.现有一班路过列车,必须在5分钟内旅客全部检票进站,问此车站至少要同时开放几个检票口. (有计算过程)

设原来旅客数为n,增长速度为x/分钟
因为检票速度一定,则30/(30x+n)=10*2/(10x+n)
推出:n=30x
假设开y个检票口,5分钟进站,则5y/(5x+n)=30/(30x+n)=10*2/(10x+n)
代入n=30x
可得y=3.5
所以至少要开4个检票口