设函数f(x)有二姐连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’(x)+1]/[1-cosx]=2,则

问题描述:

设函数f(x)有二姐连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’(x)+1]/[1-cosx]=2,则
答案为f(x)在x=0处取极大值
李永乐复习全书p95解答上有一步 (x->0)lim[f''(x)+1]=lim[f''(x)+1]/0.5*x^2=2 ,由此可知 lim[f''(x)+1]=f''(x)+1=0请问这一步是怎样解释,我的理解是lim[f''(x)+1]=2我知道可能是错的,但前一步不会解释,

当x->0时,0.5*x^2是无穷小量,要使lim[f''(x)+1]/0.5*x^2的极限存在且等于2,则f''(x)+1也必是无穷小量,即lim[f''(x)+1]=0