求y=arctanx+arctan(1-x)/(1+x)的值
问题描述:
求y=arctanx+arctan(1-x)/(1+x)的值
x∈(-无穷,-1)∪(-1,+无穷)
tany=tan(arctanx+arctan(1-x)/(1+x))=1
∵x≠-1,(1-x)/(1+x)≠-1,arctanx∈(-π/2,-π/4)∪(-π/4,π/2),arctan(1-x)/(1+x)∈(-π/2,-π/4)∪(-π/4,π/2) ,
又∵tany=1,
∴y=π/4或-3π/4.
最后一步不太懂.为什么会分两类呢
当x>-1时,y=π/4;当x<-1时,y=3π/4.
答
tany=1 y可以有无穷多个值 但是前面几步(arctanx∈(-π/2,-π/4)∪(-π/4,π/2),arctan(1-x)/(1+x)∈(-π/2,-π/4)∪(-π/4,π/2) ) 限制y大于-π 小于π y就只能是π/4或-3π/4但这里答案省略arctanx∈(-π/2,-...