斜率为2的直线l与双曲线(x^2)/3-(y^2)/2=1交于A,B两点,且AB的绝对值=4,求直线l的方程

问题描述:

斜率为2的直线l与双曲线(x^2)/3-(y^2)/2=1交于A,B两点,且AB的绝对值=4,求直线l的方程

y=2x+b.
x²/3-(2x+b)²/2=1.
10x²+12bx+3b²+6=0.
|x1-x2|=√(24b²-240)/10.
|y1-y2|=2√(24b²-240)/10.
(x1-x2)²+(y1-y2)²=16.
b²=55/3.b=±√165/3.
直线方程为:L1:y=2x+√165/3.
L2:y=2x-√165/3.